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Abstract

Cells can sense temporal changes of molecular signals, allowing them to predict environmental vari-

ations and modulate their behaviour. This paper elucidates the underlying biomolecular mechanisms

of time derivative computation, facilitating the design of reliable synthetic differentiator devices for

a variety of applications, ultimately expanding our understanding of cell behaviour. In particular,

we describe and analyse three alternative biomolecular topologies that work as signal differentiators

of high accuracy to arbitrary input signals around their nominal operation. We propose strategies to

preserve their performance even in the presence of high-frequency input signal components, which

are detrimental to the performance of most differentiators. We found that the core of the proposed

topologies appears in natural regulatory networks and we further discuss their biological relevance.

The simple structure of our designs makes them promising tools for realizing derivative control action

in synthetic biology.
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Introduction

Measuring the speed at which a physical process evolves over time is of central importance to science

and engineering. This can be done by computing the time derivative of the function describing the

process. Several examples of cellular systems exhibiting derivative action indicate that calculating the

rate of change of biological processes is essential in nature. The retina of our eyes, for instance, is one

of the best-studied neural networks of the brain. Its response to changes in light intensity reveals typ-

ical characteristics of derivative action which stem from the interaction between cone and horizontal

cells [1, 2]. In microbiology, the chemotaxis signaling pathway in bacteria such as Escherichia coli

involves computation of time derivatives: to navigate towards nutrients and away from toxins, bac-

teria are able to sample their environment as they move and convert spatial gradients into temporal

ones [3–8]. Furthermore, in the context of cellular energy metabolism, in silico studies have revealed

the role of creatine phosphate as a buffering species that allows for adaptation to a changing demand,

thus exploiting the anticipatory action enabled by derivative control [9]. This observation is a specific

example of a broader class of biomolecular processes where the presence of rapid buffering proves to

be equivalent to negative derivative feedback [10].

In traditional engineering, differentiators refer to devices capable of applying time differentiation

to an input stimulus, for example a mechanical or electrical signal. In the rapidly growing field of

synthetic biology, the ability to build reliable biomolecular differentiators would offer considerable

advantages [11–13]. As an immediate application, such genetic circuits would be able to track the

rate of change of the concentration of biomolecules of interest, thus acting as speed biosensors. They

can also allow for advanced regulation strategies in the cellular environment by enabling the construc-

tion of more efficient biocontrollers, e.g. Proportional-Integral-Derivative (PID) control schemes, the

workhorses of modern technological process control applications [2]. In general, derivative control

can enhance the stability of a feedback system and provide a smoother transient response.

Recent efforts in this rather underexplored research area include the design of a differentiator mod-

ule consisting of linear input/output functions realized by specific processes of protein production [14,

15]. It has further been demonstrated that calculation of time derivatives is possible by using ultrasen-

sitive topologies operating within a negative feedback loop [16], and a motif capable of computing

positive and negative temporal gradients, which includes input delays and the idea of an incoherent

feed-forward loop, has been presented [17]. With the aim of providing derivative action in PID con-
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trol architectures, networks directly inspired by bacterial chemotaxis [18] or based on the so-called

dual rail encoding have also been proposed [19, 20]. This approach avoids negativity by decomposing

a signal into two nonnegative ones [21]. Finally, a derivative controller tailored to gene expression

is analyzed in [22], while in the PID architecture introduced in [23], derivative control is carried out

with inseparable connection to proportional and integral actions.

Here, we aim to elucidate potential mechanisms that cells exploit to achieve signal differentiation

and, in parallel, to pave the way for designing efficient and reliable artificial signal differentiator de-

vices in a cellular context. Notably, we address commonly encountered issues related to guaranteeing

satisfactory accuracy of temporal derivative calculation for arbitrary molecular signals. We also focus

on motifs that can function as independent, general-purpose differentiators without being limited to

specific roles such as control strategies. Moreover, the theoretical assumptions under which these

motifs are able to work as intended can be practically satisfied in designs.

Specifically, we introduce three biomolecular architectures capable of functioning as signal differ-

entiators of high accuracy around their equilibria. We call them Biomolecular Signal Differentiators

(BioSD). Each of these networks can be interpreted as a modular and tunable topology inside the

cell that accepts a molecular signal as an input and produces an output signal proportional, or ideally

equal, to the time derivative of the input signal (Fig. 1a). The output corresponds to a biochemical

species, whose concentration can be measured. The proposed architectures provide simple blueprints

for the design of synthetic biomolecular differentiators, but can also be interpreted as lenses through

which derivative action in natural systems can be identified and studied.

We demonstrate the special characteristics of the three BioSD architectures (BioSD-I, II, and III)

via theoretical analyses and numerical simulations. We also discuss the major limitation of both

technological and biological differentiators, namely amplification of undesired high-frequency com-

ponents of the input signal, and propose strategies to overcome this obstacle. Finally, we show the

occurrence of one of the BioSD topologies in natural regulatory networks involved in bacterial adap-

tation to stress conditions, highlighting the biological relevance of the presented designs.
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Results

Biological structure

We begin by presenting the molecular interactions in the BioSD circuits as chemical reaction net-

works (CRNs). These circuits represent three alternative topological entities which, under certain

assumptions, realize the same concept of signal differentiation. In the analysis that follows, the in-

put and output signal of the differentiators are modeled as biomolecular species, namely U and X

respectively.

Figure 1b illustrates the first architecture, BioSD-I, which consists of the following reactions:

∅ kinU
X , ∅ b X , X

k2 X +Z

X +Z
k1 Z , X δ ∅ , Z

k3/Z
∅

(1)

Here, the production of output species X depends on two reactions. One of them has a constant rate

while the other occurs at a rate proportional to the concentration of input species U . X also catalyzes

the formation of species Z which, in turn, inhibits X . Finally, the removal rate of X is proportional

to its concentration while Z adheres to a constant rate of decay. One way to attain this behaviour

is through enzyme-catalyzed degradation of Z where the enzyme is operating at saturating substrate

levels (see Supplementary Note 1.1).

In the second architecture, BioSD-II (Fig. 1c), the formation process of output species X is the same

as in BioSD-I while Z1, the production of which is facilitated by X , and Z2 annihilate each other. Z1

inhibits X which decays in the same way as in BioSD-I. The reactions that form the corresponding

CRN are:

∅ kinU
X , ∅ b X , X

k2 X +Z1

X +Z1
k1 Z1 , ∅ k3 Z2 , Z1 +Z2

η
∅ , X δ ∅

(2)

Finally, Fig. 1d shows the third topology, BioSD-III, which is described by the reactions:

∅ kinU
X , ∅ b X , X

k2 X +Z1 , X +Z1
k1 Z1

∅ k3 Z2 , X +Z2
k1 X +X +Z2 , Z1 +Z2

η
∅ , X δ ∅

(3)

This CRN includes an autocatalytic-like reaction: X is able to produce more of itself in the presence
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of Z2. The rest of its structure is identical to the CRN of BioSD-II.

Mathematical description

We now derive the dynamics of the proposed BioSD networks using the law of mass action [24]

unless otherwise stated, adopting the same order of presentation as in the preceding section.

BioSD-I (CRN (1)) can be described by the following system of ordinary differential equations

(ODEs):

Ẋ = kinU +b− k1XZ−δX (4a)

Ż = k2X− k3 (4b)

Note that the enzymatic degradation of Z is assumed to follow Michaelis-Menten kinetics, as previ-

ously discussed.

Next, from CRN (2) we obtain the following ODE model for BioSD-II:

Ẋ = kinU +b− k1XZ1−δX (5a)

Ż1 = k2X−ηZ1Z2 (5b)

Ż2 = k3−ηZ1Z2 (5c)

For the last circuit, BioSD-III, CRN (3) can be modelled using the following ODEs:

Ẋ = kinU +b− k1XZ1 + k1XZ2−δX (6a)

Ż1 = k2X−ηZ1Z2 (6b)

Ż2 = k3−ηZ1Z2 (6c)

We can prove that for a constant input U∗, each of the BioSD network models has a unique locally

exponentially stable equilibrium (see Supplementary Note 1). Near their steady-states, the circuits are

able to differentiate biological signals with high accuracy, as shown in the next section. Finally, for

the purpose of this study we assume that the parameter η in BioSD-II is sufficiently large (a notion

mathematically defined in Supplementary Note 2). This implies that the binding between species Z1

and Z2 occurs with sufficiently high affinity. This constraint does not have to hold for BioSD-III,
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which includes the same annihilation reaction.

Achieving biological signal differentiation

In order for the proposed biomolecular modules to work as signal differentiators, we desire for their

output X to be equal or at least proportional to the derivative of their input U . This immediately raises

the following challenge: both U and X refer to biomolecular species concentrations and, by extension,

represent non-negative signals. However, in the general case, the derivative of a nonnegative signal

can take negative values and, as a result, X would need to go below zero. Thus, it could be argued that

X is unable to express the rate of change of an arbitrary input signal. An obvious way to overcome this

obstacle is to add a bias to the computed derivative. As we demonstrate here, the perfect candidate for

realizing this bias is the steady state of X around which derivative action can be achieved. A detailed

mathematical derivation of the results that follow can be found in Supplementary Note 3.

We are interested in the local behaviour of the BioSD networks and therefore consider input stimuli

that do not force them to operate far away from their equilibrium. Subsequently, we assume that every

input signal can be described as:

U =U∗+UTV (7)

where U∗ is constant while UTV is time-varying.

We now establish conditions for accurate signal differentiation. For this purpose, we introduce a

non-dimensional parameter:

ε =
k2

2

k1k3
3
(kinU∗+b)2 (8)

It can be shown that if ε is close to zero, i.e.:

ε � 1 (9)

then the local dynamics of X in BioSD-I (Eqs. (4a)-(4b)), BioSD-II (5a)-(5c)) and BioSD-III (Eqs.

(6a)-(6c)) can be approximated by:

X =
kin

k1k3
U̇ +

k3

k2
(10)

In fact, there is a family of input signals for which the BioSD topologies are able to provide accurate

differentiation without the need of satisfying condition (9). More specifically, for input signals for
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which the term UTV in Eq. (7) is of the form:

UTV = ξ1e−ξ3t +ξ2t, (11)

where ξ1, ξ2 are arbitrary constants and ξ3 =
k2

k3
(kinU∗+b), we can derive Eq. (10) for all three

networks without selecting an appropriate parameter combination to drive ε close to zero.

From Eq. (10), we can see that the BioSD modules use the biomolecular concentration
k3

k2
as a bias.

Around this point they can operate as signal differentiators, producing an output signal component

which is proportional to the derivative of the input or even equal if we can ensure kin = k1k3. The bias

therefore depends only on two parameters which, ideally, can be adjusted as desired. This provides us

with the freedom of choosing any (fixed) concentration of X as a bias, which will remain unchanged

regardless of the rest of the model parameters, the input stimulus, or potential constant disturbances on

the output. To appreciate this further, we recall the birth reaction for X with constant rate b, which is

included in each of the proposed CRNs. Besides its role as a structural requirement, this birth reaction

can also represent an external constant disturbance applied on X ; this, however, does not affect the

zero-level we choose for our measurements. Once the concentration of X reaches this level, it will

stay there until an input excitation appears and it will come back once the excitation stops. Hence, the

previously mentioned fixed concentration can also be seen as a “rest position” for the differentiators.

The feature just described is of key importance and stems mainly from the following two sources:

the (input-to-state) stability that characterizes BioSDs and the fact that the steady-state of the output

coincides with the aforementioned zero-level concentration. The latter is achieved due to integration

carried out by the a ‘memory’ function which is realized via species Z within BioSD-I and the (not

physical) quantity Z1−Z2 within BioSD-II, III.

Tunability and accuracy

It is convenient for the circuit designer who aims to implement the BioSD topologies to be able to

choose the parameter values and ensure that the resulting differentiators meet the expected perfor-

mance requirements. Nonetheless, there may be cases where the number of system parameters that

can be suitably tuned is limited, for instance due to constraints related to the cellular processes in-

volved in the circuits under investigation. Even in this case the architecture of our circuits allows for

some tunability as long as the designer can choose some crucial parameters.
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Consider for example the extreme scenario where only one of the model parameters can be reg-

ulated. If this parameter is k3, then, according to Eq. (10), its appropriate tuning may result in an

acceptable gain by which the output signal is multiplied (output gain) and bias based on which this

signal is measured. At the same time, Eq. (8) reveals that a small change in k3 can affect ε signifi-

cantly and thereby make it sufficiently small as Eq. (9) commands.

It immediately emerges from the above that the way we tune the BioSD networks defines the level

of accuracy regarding their derivative action. Indeed, ε is subject to almost all parameter rates in these

networks and, as pointed out in the previous section, an ε close to zero is a fundamental requirement

if our goal is to construct differentiators that work accurately for all kinds of input stimuli. In fact, in

Supplementary Note 4 we show for arbitrary input signals that the ability of the output to track the

ideal derivative of the input improves as ε approaches zero.

Sensing the response speed of biomolecular networks

We now demonstrate through an example the capacity of BioSD modules to compute the temporal

derivative of biological signals. At the same time, we highlight one of their potential applications

discussed above, namely as rate-of-change detectors or speed biosensors.

We consider the antithetic motif [18, 25–30]:

∅ ν1 C1 , C1
ν2 C1 +Y1 , Y1

ν3 Y1 +Y2

Y2
ν4 Y2 +C2 , C1 +C2

ν5 ∅ , Y1
ν6 ∅ , Y2

ν7 ∅
(12)

Species Y1, Y2 represent an arbitrary biological process whose output, Y2, can be robustly steered

towards a desired value
(n1

n4

)
. This is feasible through the feedback integral control which is im-

plemented via species C1, C2, thus achieving robust perfect adaptation. Depending on the parameter

rates, the dynamics of the above architecture can be either stable or unstable. Nonetheless, even in

a stable system, the species of interest, Y2, sometimes displays a long-lasting transient response with

damped oscillations before it settles to a steady-state. This provides an opportunity to assess the

ability of the BioSD networks to calculate the speed at which these oscillations evolve.

In order for a BioSD device to function as a biosensor for CRN (12), a suitable interconnection be-

tween these circuits is required while preserving the modularity [24] of the two networks and avoiding
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any loading problems. One way to accomplish this is through the reaction:

Y2
kin Y2 +X (13)

where Y2 plays the role of the input species U without being consumed. Alternatively, in case the

nature of Y2 prevents it from directly producing X , we can use a separate sensory species S which is

capable of participating in the formation of X and it is co-expressed with Y2, i.e.:

Y1
ν3 Y1 +Y2 +S , S

kin S+X , S
ν7 ∅ (14)

Adopting the second interconnection as the most general one, we manifest in Fig. 2 that the rate

of change of the concentration of Y2 is accurately represented by the output of the BioSD networks

provided that ε is sufficiently small (condition (9)). As already discussed, satisfying this constraint is

necessary unless the input of the differentiators belongs to the family of signals defined by Eqs. (7),

(11), which is clearly not true in this case.

For comparison purposes, we now replace the circuit (12) with the general birth-death process:

∅
νb Y3 , Y3

νd ∅ (15)

maintaining the same kind of interconnection, as illustrated in Fig. 3. Focusing on the linear regime

of its response (which is obviously aligned with Eq. (11)), it can be seen that, although ε is much

larger than unity, BioSD networks are now able to provide accurate signal differentiation.

Response to input signals corrupted by high-frequency noise

Potentially the most important problem of differentiator devices is their sensitivity to high-frequency

noise components which the applied input signal may contain [2]. To this end, we consider an input

signal with a time-varying component 1

UTV = Au sin(ωut +φu)︸ ︷︷ ︸
useful information

+Ad sin(ωdt +φd)︸ ︷︷ ︸
noise

(16)

1Although we consider a sinusoidal UTV , this is without loss of generality as UTV can be thought of as a Fourier
component of a more general signal.
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where the actual signal we want to differentiate (useful information) is accompanied by undesired

fluctuations (noise) arising, for instance, from unintended cross-talk interactions [24]. Assuming

perfect differentiation, we get:

U̇TV = ωuAu sin
(

ωut +φu +
π

2

)
︸ ︷︷ ︸
derivative of useful information

+ωdAd sin
(

ωdt +φd +
π

2

)
︸ ︷︷ ︸

derivative of noise

(17)

Hence, even if the level of input corruption is low (e.g. Ad is much smaller than Au - Eq. (16)),

the damage in the output of a perfect differentiator may be detrimental in case of a rapidly fluctuating

noise signal (ωd high). That is, ωdAd can be made arbitrarily large compared to ωuAu (Eq. (17)) and,

therefore, it is possible for the derivative of the useful signal to be completely drowned out by the

derivative of some high frequency input noise.

Interestingly, the BioSD topologies allow us to deal with this noise amplification by suitably adjust-

ing ε (see Supplementary Note 5 for more details). It has been emphasized already that the accuracy

of derivative action drops as this parameter moves away from zero. However, the intensity of this

phenomenon can vary significantly depending on the frequency content of each input signal. In fact,

for a given nonzero ε , there is a range of frequencies where signal differentiation can be successfully

performed while over a different range of higher frequencies signal attenuation is carried out instead

(Fig. 4a). Nevertheless, between these regions of the frequency spectrum, neither differentiation nor

attenuation (at least of satisfactory accuracy) may be achieved (Fig. 4b).

A structural addition for enhanced performance

In case there are increased requirements for noise reduction that cannot be easily met via parameter

tuning, we present an alternative version of the BioSD networks with higher noise insensitivity, which

we call BioSDF (Fig. 5a). These topologies are described by the same CRNs presented in the section

Biological structure, but amended appropriately.

Recalling CRNs (1), (2), (3), we see that input signals are applied to BioSD modules through the

reaction:

∅ kinU
X
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In BioSDF topologies, the above is replaced by the following set of reactions:

∅
µ1U

Z3 , Z3
kin Z3 +X , Z3

µ2 ∅

The additional species Z3 is produced by the input species and degrades in the traditional manner

while it catalyzes the formation of the output species. This structural addition is inspired by the work

in [31, 32], where biomolecular concepts from the area of signal processing were studied. In the

following, we briefly present the main features of BioSDF modules – a comprehensive analysis of

their behaviour can be found in Supplementary Note 6.

There is a band of frequencies where, under the assumptions discussed in Achieving biological

signal differentiation locally, the output of BioSDF networks can be approximated by:

X =
µ1kin

µ2k1k3
U̇ +

k3

k2
(18)

Compared to the original BioSD topologies (Eq. (10)), we now have two additional tuning pa-

rameters (µ1, µ2) with respect to the output gain. However, the major advantage of this version of

differentiators is an enhanced capability of noise filtering. In fact, we can have a greatly extended

frequency range across which very strong attenuation of high frequency input noise can be achieved

(Figs. 5b, 5c). At the same time, the width of this frequency band depends on µ2 and can be adjusted

appropriately.

Biomolecular Signal Differentiators in natural regulatory networks

As outlined in the introduction, derivative action appears to be an important mechanism in various

biological systems. To explore the biological relevance of the proposed BioSDs for cellular adap-

tations to environmental changes, we identified two naturally occurring regulatory network motifs

resembling the BioSD-II network. Note that these natural topologies are operating in the larger con-

text of complex regulatory networks involving a plethora of signaling factors, some of which remain

to be identified. We therefore describe the relevant motifs but do not comprehensively detail all inter-

actions occurring in the biological system. In addition to the natural regulatory networks described

here, we outline possible synthetic implementations for all BioSD networks in Supplementary Note 8.
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Stationary phase and starvation response – RpoS regulatory network

As shown in Fig. 6a, we found the BioSD-II motif in the context of adaptation to nutrient starvation

and entry into stationary phase, which is mediated by the sigma factor RpoS in E. coli and related

bacteria (reviewed in [33, 34]). Stress conditions, such as nutrient depletion or high pH, serve as the

input U . While RpoS is present at low levels (b) in exponentially growing cells, its expression is

significantly increased through both transcriptional and post-transcriptional regulation in response to

environmental stresses or starvation [33]. One of the genes whose expression is dependent on RpoS

is rssB, which encodes a response regulator. RssB binds to RpoS and mediates its degradation by

the ClpXP protease [35], thus functioning as Z1. Nutrient starvation also induces the expression of

several anti-adaptor proteins (Ira; inhibitor of RssB activity). These proteins bind to RssB and prevent

RpoS degradation [36], which corresponds to the action of Z2 in BioSD-II.

Heat shock response – RpoH regulatory network

A second example for the BioSD-II motif was identified in the regulatory network of the sigma factor

RpoH, which coordinates the heat shock response in E. coli (Fig. 6b) [37, 38]. Upon heat shock, cellu-

lar RpoH levels rise significantly above their low baseline concentrations (b), inducing the expression

of several chaperones (e.g. DnaKJ and GroELS) and proteases (e.g. FtsH and Lon). DnaK and DnaJ

can bind to RpoH and facilitate its degradation by FtsH [39, 40], thereby acting as Z1. Unfolded or

misfolded proteins will sequester chaperones and proteases [40], thus increasing the stability of RpoH

and fulfilling the function of Z2. In this network, the amount of active RpoH (as opposed to the total

amount of RpoH) should be considered as X , since it has been found that the activity rather than the

concentration of RpoH inside the cell drops during temperature downshifts [41].

Discussion

In this study, we propose three biomolecular topologies that are able to act as highly accurate signal

differentiators inside the cell. These designs provide guidance for building cellular devices capable

of computing time derivatives of molecular signals. At the same time, they reveal concepts that are

found in natural biological networks implementing differentiation and derivative feedback.

More specifically, we introduce three general biomolecular architectures BioSD-I, II and III. Their
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generality lies in the fact that they are represented by chemical reaction networks without being re-

stricted by the biological identity of reactants and products and, by extension, the corresponding bio-

logical pathway. Important structural components of the BioSDs are a negative feedback loop created

by a special process of excitation and inhibition between two species [42], an enzymatic degrada-

tion of zero-order kinetics (BioSD-I), an autocatalytic-like reaction (BioSD-III) and an antithetic-like

motif based on annihilation [21, 25] (BioSD-II, BioSD-III). We theoretically analyze their features

and show the conditions under which high performance can be guaranteed. Among others, important

concepts such as stability, tunability and accuracy are discussed in detail.

Special emphasis is placed on the expected sensitivity of differentiators to input signals corrupted

by high-frequency noise. We demonstrate that this issue can be resolved to a certain extent simply

through suitable parameter tuning. Nevertheless, for cases in which stronger noise attenuation is

needed, we present a structural modification that gives rise to three slightly different architectures,

namely BioSDF -I, II and III, with enhanced capabilities. However, the price for this improvement is

the addition of an extra biomolecular species, which implies an increase in structural complexity. Fur-

thermore, we introduce performance metrics both for BioSDs (Supplementary Note 5) and BioSDFs

(Supplementary Note 6) based on which the circuit designer can assess the quality of signal differ-

entiation and attenuation. These metrics take into account both the frequency content of the input

signal and the reaction rates involved in the circuits, thus facilitating tuning according to the expected

performance standards.

The ability to perform time differentiation is of central importance in various biological systems,

contributing to stability and fast adaptation to changing conditions [6, 9, 43]. Owing to the generality

of the presented topologies, we anticipate that the present study will facilitate the investigation of

naturally occurring systems capable of derivative action. In this study we discuss the regulatory

networks of two bacterial sigma factors, RpoS and RpoH, which play a central role in the response

and adaptation to stress conditions and heat shock, respectively. Interestingly, these networks share

structural characteristics with one of the proposed topologies, BioSD-II.

In addition, the motifs presented here provide building blocks that can be both implemented in

stand-alone applications, such as speed biosensors, and also combined with existing biochemical

control structures in a modular fashion, e.g. for building biomolecular PID controllers [18]. We de-

scribe potential designs for synthetic experimental implementation of all three BioSDs, which can be
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readily adapted depending on the nature of the system and available biological parts (Supplementary

Note 8). To realize the antithetic motif in BioSD-II and III, we propose the use of a protease/protease

inhibitor pair as an alternative to the previously described systems using sigma and anti-sigma factors

[44] or sRNAs and mRNAs [45, 46]. To allow for greater flexibility in choosing the biomolecular

species, we introduce the concept of auxiliary species, which is further analyzed in Supplementary

Note 9.

The speed or higher derivatives of the output of a system offers important information about its

properties. For an electromechanical system this is not difficult, but this has been a challenging ques-

tion for biological systems. In this paper we provide an approach to gain access to this information,

which will be invaluable for assessing and improving the performance of biological systems. We

believe that our BioSD topologies will expand the tools available for understanding and engineering

biological systems for robustness and reliability.
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Code availability

All numerical simulations were performed in MATLAB R2020 using the ODE solver ode23s except

for those in Fig. 5 where the ODE solver ode113 was used. Simulation parameter values can be

found in the figure captions. Initial conditions for the biomolecular species involved are considered

zero except for BioSDs and BioSDsF where the corresponding equilibria (“rest-positions”) are used

(see Supplementary Note 1 and Supplementary Note 6).
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Fig. 1: Biomolecular structures capable of signal differentiation.
Schematic representation of a the notion of signal differentiation carried out by a biomolecular device inside the cell, b Biomolecular Signal Differentiator - I (BioSD-I), c Biomolecular
Signal Differentiator - II (BioSD-II), and d Biomolecular Signal Differentiator - III (BioSD-III). In b, c, d the following notation is adopted: (→ ) means that the transformation of
reactants into products only happens in the direction of the arrow. (−−• ) indicates that reactants enable product formation without being consumed. (−−| ) denotes inhibition of products
by a reactant where the reactant is not consumed.
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Fig. 2: Sensing the rate-of-change of a synthetic regulatory biomolecular network through a Biomolecular Signal
Differentiator.
a Schematic of CRN (12) (network of interest) accompanied by a BioSD device (differentiator) which measures the speed
of the output, Y2 of the network via the sensing mechanism in (14). We adopt the same arrow notation as in Fig. 1 while

the symbol
(

...
)

represents any of the three BioSD devices. b ODE model capturing the dynamics of the topology given

by (12), (14). As anticipated, the behaviour of species Y2 and S is described by the same equation. c Input U of the
differentiator coincides with species S and results from the simulation of the ODE model depicted in b with the following
parameter values: ν1 = ν2 = ν4 = 2, ν3 = 4, ν5 = 12, ν6 = ν7 = 1. d Simulation of BioSD-I (Eqs. (4a), (4b)) response to
the input shown in c using the following parameter values which satisfy condition (9) : kin = k3 = b = 100, k1 = k2 = 1,
δ = 0.5. As can be seen, the output, X , of the differentiator is an accurate replica of the derivative of input U . e The
simulation in d is repeated after replacing the value of both kin and k3 with 10. This change leads to violation of condition
(9). In fact, ε � 1 and, thus, poor performance of the differentiator is observed. The respective simulations regarding
BioSD-II and BioSD-III are presented in Supplementary Note 7. As expected, their responses are identical to those of
BioSD-I.
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Fig. 3: Sensing the rate-of-change of a birth - death biomolecular process through a Biomolecular Signal Differen-
tiator.
a Schematic of CRN (15) (network of interest) accompanied by a BioSD device (differentiator), which measures the speed
of the output of the network (Y3) via the sensing mechanism in (14). We adopt the same arrow notation as in Fig. 1 while

the symbol
(

...
)

represents any of the three BioSD devices. b ODE model capturing the dynamics of the topology given

by (15), (14). As anticipated, the behaviour of species Y3 and S is described by the same equation. c Input U of the
differentiator coincides with species S and results from the simulation of the ODE model depicted in b with the following
parameter values: νb = 0.1, νd = 0.001. d Simulation of the BioSD-I (Eqs. (4a), (4b)) response to the input presented
in c using the following parameter values: kin = k3 = 10, b = 100, k1 = k2 = 1, δ = 0.5 (same as in Fig. 2e). Although
ε � 1 (condition (9) is violated), the output, X , of the differentiator is now an accurate replica of the derivative of input
U . This is due to the fact that the input U shown in c belongs to the class of signals defined by Eqs. (7, 11). The respective
simulations regarding BioSD-II and BioSD-III are presented in Supplementary Note 7. As expected, their responses are
identical to those of BioSD-I.
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Fig. 4: Response of Biomolecular Signal Differentiators to input signals with undesired high frequency components.
Without loss of generality we select BioSD-I (Eqs. (4a), (4b)) to plot: a Simulated response to an input of the form (7), (16) using the following parameter values: U∗ = 1.2,
Au = ωu = 1, Ad = 0.2, ωd = 400, φu = φd = 0, kin = k3 = b = 100, k1 = k2 = 1, δ = 0.5 (condition (9) is satisfied). Consequently, with respect to the input signal, the frequency of the
undesired component (noise) is 400 times higher than that of the component of interest (useful information). It is evident that significant noise attenuation takes place and the accuracy
of signal differentiation therefore remains very high. b The simulation in a is repeated after changing the value of ωd to 50 which makes the noise 40 times faster compared to the
useful information. As can be seen, there is a decrease in the accuracy level of signal differentiation since the input noise of this frequency cannot be filtered adequately.
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Fig. 5: An alternative version of Biomolecular Signal Differentiators with an enhanced capability of input noise filtering.

a Schematic structure of BioSDF . We adopt the same arrow notation as in Fig. 1 while the symbol
(

...
)

represents the remaining reactions composing any of the three BioSD devices.

For comparison purposes, we focus on a BioSDF device based on BioSD-I to re-plot the simulation of a Fig. 4a and b Fig. 4b for the same values of the mutual parameters and
µ1 = µ2 = 5. It is apparent that in both a, b very strong input noise attenuation takes place and the differentiation of the useful signal is thus conducted with significantly high accuracy.
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Fig. 6: Examples of the Biomolecular Signal Differentiator-II motif in natural systems.
Simplified schematics of BioSD-II topologies occurring as part of a the RpoS-mediated stress response and b the RpoH-
mediated heat shock response in Escherichia coli. Corresponding components of BioSD-II are indicated.
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Supplementary Note 1: Equilibria and stability of Biomolecular Signal
Differentiators

We assume that all biomolecular circuits in this study are represented by chemical reaction networks

(CRNs) whose dynamics are described by the law of mass action unless otherwise stated. For the

purposes of deterministic modelling, we consider input U(t) as a bounded, non-negative, continuous-

time signal, the time derivatives of which exist and are also bounded. This is clearly aligned with the

biological nature of U(t) which can correspond, for example, to the concentration of a biomolecular

species.

Supplementary Note 1.1: Biomolecular Signal Differentiator-I

Biomolecular Signal Differentiator-I (BioSD-I) is described by the CRN:

∅ kinU
X , ∅ b X , X

k2 X +Z

X +Z
k1 Z , X δ ∅ , Z

k3/Z
∅

(S1)

where kin, b, k2, k1, k3, δ ∈ R+. Note that the removal rate of Z is constant and equal to k3. This is

possible if Z participates in an enzyme-catalyzed degradation process which is traditionally described

by Michaelis-Menten kinetics. More precisely, the removal rate of Z is equal to

k3
Z

Z +Km
(S2)

where Km ∈ R+ is the Michaelis-Menten constant. When the enzyme that catalyzes the degradation

process is saturated by its substrate, we have:

Z� Km (S3)

which entails, in effect, zero-order kinetics since Eq. (S2) becomes practically equal to k3.

The dynamics of CRN (S1) are given by the following system of Ordinary Differential Equations
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(ODEs):

Ẋ = kinU +b− k1XZ−δX (S4)

Ż = k2X− k3 (S5)

For any constant input U∗, a steady state (X∗, Z∗) of the system (S4), (S5) exists and is finite. By

setting the time derivatives of this system to zero, we can obtain the following unique steady-state:

X∗ =
k3

k2
(S6)

Z∗ =
k2(kinU∗+b)

k1k3
− δ

k1
(S7)

Clearly X∗ is positive while, due to Eq. (S3), the same is true for Z∗ (in fact: Z∗� 0).

To study the local stability of the above equilibrium, we linearize (S4) – (S5) around (X∗, Z∗) for a

constant input U∗ to get:

Ẋ

Ż

=

−k2(kinU∗+b)
k3

−k1k3

k2

k2 0


︸ ︷︷ ︸

G1

X

Z

 (S8)

As far as the linear system (S8) is concerned, the steady state (X∗, Z∗) is exponentially stable since

matrix G1 is Hurwitz. To prove this, we find the characteristic polynomial of G1 as:

P1(s) = det(sI−G1) = s2 +
k2

k3
(kinu∗+b)s+ k1k3 (S9)

According to Routh-Hurwitz criterion, the second-order polynomial (S9) has both roots in the open

left half plane if and only if both
k2(kinU∗+b)

k3
and k1k3 are positive, which is always true. Conse-

quently, (X∗, Z∗) is a positive locally exponentially stable steady state for the nonlinear system (S4),

(S5) .

Following the same procedure, we next analyze BioSD-II and BioSD-III.
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Supplementary Note 1.2: Biomolecular Signal Differentiator-II

The CRN that corresponds to Biomolecular Signal Differentiator-II (BioSD-II) is:

∅ kinU
X, ∅ b X, X

k2 X + Z1

X + Z1
k1 Z1, ∅ k3 Z2, Z1 + Z2

η
∅ , X δ ∅

(S10)

where kin, b, k2, k1, δ , η ∈ R+.

The dynamics of CRN (S10) are described by the set of ODEs:

Ẋ = kinU +b− k1XZ1−δX (S11)

Ż1 = k2X−ηZ1Z2 (S12)

Ż2 = k3−ηZ1Z2 (S13)

For any constant input U∗, provided that:

k2(kinU∗+b)> δk3, (S14)

we have a unique positive (finite) steady state:

X∗ =
k3

k2
(S15)

Z∗1 =
k2(kinU∗+b)

k1k3
− δ

k1
(S16)

Z∗2 =
k3

η

(
k2(kinU∗+b)

k1k3
− δ

k1

) (S17)

We now linearize (S11) – (S13) around the fixed point defined by (S15) - (S17) to obtain:


Ẋ

Ż1

Ż2

=


−k2(kinU∗+b)

k3
−k1k3

k2
0

k2 −ηZ∗2 −ηZ∗1

0 −ηZ∗2 −ηZ∗1


︸ ︷︷ ︸

G2


X

Z1

Z2
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The characteristic polynomial of G2 is:

P2(s) = det(sI−G2) = s3 +α2s2 +α1s+α0 (S18)

where

α2 = σ +η(Z∗1 +Z∗2) (S19)

α1 = k1k3 +ση(Z∗1 +Z∗2) (S20)

α0 = k1k3ηZ∗1 (S21)

and

σ =
k2(kinU∗+b)

k3

The polynomial (S18) has all roots in the open-half plane if and only if α2,α0 are positive and

α2α1 > α0 (Routh-Hurwitz criterion). Indeed:

(
σ +η(Z∗1 +Z∗2)

)(
k1k3 +ση(Z∗1 +Z∗2)

)
> ηk1k3z∗1

or

σk1k3 +σ
2
η(Z∗1 +Z∗2)+ k1k3η(Z∗1 +Z∗2)+ση

2(Z∗1 +Z∗2)
2 > ηk1k3z∗1

or

σk1k3 +σ
2
η(Z∗1 +Z∗2)+ση

2(Z∗1 +Z∗2)
2 +ηk1k3Z∗2 > 0

which is always true since all the quantities involved are positive. Therefore, (X∗, Z∗1 , Z∗2) is a positive

locally exponentially stable steady state (G2 is Hurwitz) for the nonlinear system (S11) - (S13).

Note that outside the parameter regime defined by Eq. (S14) BioSD-II is unable to reach equilib-

rium. In particular, assuming non-negative initial conditions for the system (S11) – (S13) (which is

always the case because the variables involved represent biomolecular concentrations) the states of

the latter remain always non-negative (as expected from mass action kinetics). Indeed, when X = 0,

Eq. (S11) implies Ẋ = kinU +b > 0. Furthermore, when Z1 = 0, Eq. (S12) results in Ż1 = k2X ≥ 0

and, finally, when Z2 = 0, Eq. (S13) imposes Ż2 = k3 > 0. However, outside the parameter regime

in question, one of the following must hold: k2(kinU∗+b)< δk3 or k2(kinU∗+b) = δk3. In the first
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scenario, it is apparent from Eqs. (S16), (S17) that the steady state of Z1, Z2 becomes negative while

in the second case Eq. (S17) indicates that Z2 tends to infinity - thus, BioSD-II cannot approach a

finite steady state.

Supplementary Note 1.3: Biomolecular Signal Differentiator-III

Biomolecular Signal Differentiator-III (BioSD-III) is represented by the CRN:

∅ kinU
X, ∅ b X, X

k2 X + Z1, X + Z1
k1 Z1

∅ k3 Z2, X + Z2
k1 X + X + Z2, Z1 + Z2

η
∅ , X δ ∅

(S22)

where kin, b, k2, k1, δ , η ∈ R+.

The corresponding ODE model describing the dynamics is:

Ẋ = kinU +b− k1XZ1 + k1XZ2−δX (S23)

Ż1 = k2X−ηZ1Z2 (S24)

Ż2 = k3−ηZ1Z2 (S25)

For any constant input U∗, we have a unique positive steady state (providing that it exists and is finite):

X∗ =
k3

k2
(S26)

Z∗1 =
1
2

[
k2(kinU∗+b)

k1k3
− δ

k1

]
+

1
2

√[
k2(kinU∗+b)

k1k3
− δ

k1

]2

+4
k3

n
(S27)

Z∗2 =−1
2

[
k2(kinU∗+b)

k1k3
− δ

k1

]
+

1
2

√[
k2(kinU∗+b)

k1k3
− δ

k1

]2

+4
k3

n
(S28)

Linearizing the system (S23)-(S25) around its steady state (S26)-(S28) yields:


Ẋ

Ż1

Ż2

=


−k2(kinU∗+b)

k3
−k1k3

k2

k1k3

k2

k2 −ηZ∗2 −ηZ∗1

0 −ηZ∗2 −ηZ∗1


︸ ︷︷ ︸

G3


X

Z1

Z2
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The characteristic polynomial of G3 is:

P3(s) = det(sI−G3) = s3 +α
′
2s2 +α

′
1s+α

′
0 (S29)

where α ′2, α ′1 are identical to α2 (Eq. S19), α1 (Eq. S20), respectively and:

α
′
0 = k1k3η(Z∗1 +Z∗2)

In order to show that G3 is Hurwitz we need to verify that α ′2α ′1 > α ′0 (from Routh-Hurwitz criterion).

This inequality is satisfied because:

(
σ +η(Z∗1 +Z∗2)

)(
k1k3 +ση(Z∗1 +Z∗2)

)
> ηk1k3(Z∗1 +Z∗2)

or

σk1k3 +σ
2
η(Z∗1 +Z∗2)+ k1k3η(Z∗1 +Z∗2)+ση

2(Z∗1 +Z∗2)
2 > k1k3η(Z∗1 +Z∗2)

or

σk1k3 +σ
2
η(Z∗1 +Z∗2)+ση

2(Z∗1 +Z∗2)
2 > 0

which is always true as a sum of positive quantities. Hence, (X∗, Z∗1 , Z∗2) is a positive locally expo-

nentially stable steady state for the nonlinear system (S23) - (S25).

Supplementary Note 2: The notion of strong rate of annihilation be-
tween Z1, Z2 (large η) in Biomolecular Signal Differentiator-II

BioSD-II involves the following annihilation reaction (CRN (S10)):

Z1 + Z2
η

∅

This reaction describes a process where species Z1, Z2 bind to each other irreversibly to form a product

which can be considered as biologically inactive. In other words, this product does not participate in

any of the reactions in BioSD-II. Here we demonstrate that near the equilibrium the effect of species

Z2 can be considered negligible if the formation rate, η , of the product in question is sufficiently high.

As we show in the next section, this is a requirement in order for BioSD-II to exhibit accurate signal

7
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differentiation.

By adopting the coordinate transformations: u =U−U∗, x = X−X∗, z1 = Z1−Z∗1 , z2 = Z2−Z∗2

which denote small perturbations around (U∗, X∗, Z∗1 , Z∗2), we obtain through linearization of (S11) -

(S13): 
ẋ

ż1

ż2

=


−k2(kinU∗+b)

k3
−k1k3

k2
0

k2 −ηZ∗2 −ηZ∗1

0 −ηZ∗2 −ηZ∗1




x

z1

z2

+


kin

0

0

u (S30)

We now introduce the nondimensional variables:

tn = β1t (time-scale) (S31)

xn =
1
β2

x (S32)

z1n =
β1

β2k2
z1 (S33)

z2n =
β1

β2k2
z2 (S34)

un =
kin

β1β2
u (S35)

where

β1 =
k3(

k2(kinU∗+b)
k1k3

− δ

k1

) (S36)

and β2 is an arbitrary scaling parameter that carries the same units as xn. In addition, we introduce

the nondimensional parameters:

λ1 =
β 2

1
ηk3

(S37)

λ2 =
k2(kinU∗+b)

β1k3
(S38)

λ3 =
k1k3

β1k2
(S39)

8
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By substituting Eqs. (S31)-(S39) into the model (S30), we obtain:

ẋn = un−λ2xn−λ3z1n

ż1n = k2xn− z1n−
1
λ1

z2n

ż2n = −z1n−
1
λ1

z2n

or

ẋn = un−λ2xn−λ3z1n (S40)

λ1ż1n = λ1xn−λ1z1n− z2n (S41)

λ1ż2n = −λ1z1n− z2n (S42)

According to Eq. (S37), λ1→ 0 as η → ∞. This means that we can make λ1 negligible by choosing

a large value for η :

η �
β 2

1
k3

(S43)

Assuming now that λ1 is zero the ODE model (S40)-(S42) becomes:

ẋn = un−λ2xn−λ3z1n (S44)

0 =−z2n (S45)

0 =−z2n (S46)

Combining Eqs. (S45), (S46) with Eq. (S34), we get:

z2 = 0 (S47)

From Eqs. (S34), (S47) and taking into account that z2 = Z2−Z∗2 we obtain Z2 = Z∗2 . Moreover, the

combination of (S16), (S36) and (S37) yields:

λ1 =
Z∗2
Z∗1

(S48)

Assuming that Z∗1 is finite and λ1 is zero we have Z2 = Z∗2 = 0.

9
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As a consequence, if the condition (S43) is true (λ1 is insignificant) then the deviation, z2, of species

Z2 from its steady state, Z∗2 , can be considered effectively zero while the latter is negligible compared

to Z∗1 . Furthermore, the case for which the parameter η satisfies Eq. (S43) will be referred to as

“sufficiently large η”.

Supplementary Note 3: Signal differentiation

Here we prove that, near their equilibria, BioSD networks are capable of signal differentiation.

We begin with BioSD-I whose dynamics close to its steady state are derived via linearization of Eqs.

(S4), (S5) as: ẋ

ż

=

−k2(kinU∗+b)
k3

−k1k3

k2

k2 0


x

z

+
kin

0

u (S49)

assuming the coordinate transformations : u =U−U∗, x = X−X∗, z = Z−Z∗ which represent small

perturbations around (U∗, X∗, Z∗). We next consider the nondimensional variables:

tn = c1t (time-scale) (S50)

xn =
1
c3

x (S51)

zn =
c1

k2c3
z (S52)

un =
c1kin

k2c2c3
u (S53)

where

c1 =
k2(kinU∗+b)

k3
(S54)

c2 =
k1k3

k2
(S55)

and c3 is an arbitrary scaling parameter that carries the same units as xn. We also introduce the

non-dimensional parameter:

ε =
c2

1
k2c2

(S56)
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Substituting Eqs. (S50)-(S56) into the system (S49) results in:

ẋn = −xn−
1
ε

zn +
1
ε

un

żn = xn

or

ε ẋn = −εxn− zn +un (S57)

żn = xn (S58)

We now turn our focus to the scenario where ε is small. This can be achieved in practice by selecting

model parameters such that ε � 1. Taking into account Eqs. (S54), (S55) and (S56) we have:

ε =
k2

2

k1k3
3
(kinU∗+b)2 (S59)

and, consequently, the aforementioned condition can be reformulated as:

k2
2

k1k3
3
(kinU∗+b)2� 1 (S60)

We now study the ODE model (S57), (S58) under the assumption that ε is equal to zero. Thus, we

have:

zn = un

żn = xn

or

xn = u̇n (S61)

zn = un (S62)
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Eq. (S61) becomes through Eqs. (S50), (S51), (S53), (S55):

x =
kin

k1k3
u̇ (S63)

By recalling Eq. (S6) and our initial coordinate transformations, this relationship can be rewritten as:

X =
kin

k1k3
U̇ +

k3

k2
(S64)

The above result states that BioSD-I produces an output proportional to the derivative of the input and

shifted by a fixed amount equal to
k3

k2
. The latter amount can be viewed as the zero-level ‘bias’ on

which the derivative of the input is evaluated. This “uplifting” is undoubtedly necessary in order for

negative values of the derivative to be represented by a biomolecular species.

We now construct the following second-order differential equation using Eqs. (S49), (S54) and

(S55) :

ẍ+ c1ẋ+ c2k2x = kinu̇ (S65)

We see immediately that if:

ẍ+ c1ẋ = 0 (S66)

then we arrive at Eq. (S64) or, in other words, we have identical derivative action as before. Therefore,

we find the general solution of (S66) which is:

x = θ1e−c1t +θ2t (S67)

where θ1,θ2 are arbitrary constants. Subsequently, from Eqs. (S63), (S67) we get:

u = f1e−c1t + f2t + f3 (S68)

where f1, f2, f3 are arbitrary constants

(
f1 =−

c2k2θ1

c1kin
, f2 =

c2k2θ2

kin

)
.

As a consequence, for any input signal that is described or can be approximated by (S68), the bi-

ological differentiator in question does not require special handling of the system parameters in order

to satisfy the constraint (S60) since it works satisfactorily even in the case where ε is far away from
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zero.

Following the same procedure, we study the local dynamics of BioSD-III by linearizing Eqs. (S23)-

(S25) : 
ẋ

ż1

ż2

=


−k2(kinU∗+b)

k3
−k1k3

k2

k1k3

k2

k2 −ηZ∗2 −ηZ∗1

0 −ηZ∗2 −ηZ∗1




x

z1

z2

+


kin

0

0

u

where the variables u =U−U∗, x = X−X∗, z1 = Z1−Z∗1 , z2 = Z2−Z∗2 refer to small perturbations

around the equilibrium (U∗, X∗, Z∗1 , Z∗2). Introducing the linear transformation g = z1− z2 results in

the following mathematically equivalent system:


ẋ

ġ

ż2

=


−k2(kinU∗+b)

k3
−k1k3

k2
0

k2 0 0

0 −ηZ∗2 −η(Z∗1 +Z∗2)




x

g

z2

+


kin

0

0

u (S69)

We notice that the dynamics of x and g of the system (S69) are identical to that of x and z of the

system (S49), respectively. Hence, the output, x, of BioSD-III behaves in the exact same way as the

one of previously analyzed BioSD-I.

Subsequently, we recall the dynamics of BioSD-II near its equilibrium (S30) from the preceding

section. It is evident that using the linear transformation g = z1− z2 again and assuming a sufficiently

large η (condition (S43) is satisfied), the dynamics of x and g in BioSD-II are described by Eq. (S49),

namely the dynamics of BioSD-I. By extension, the output behaviour of these two circuits is identical.

Finally, it is important to emphasize that the nonlinear systems (S4)-(S5), (S11)-(S13), (S23)-(S25)

representing BioSD-I, BioSD-II, BioSD-III, respectively, are locally input-to-state stable. This is

guaranteed by the fact that all the three aforementioned systems are differentiable in time and their

equilibrium is locally asymptotically (and more specifically exponentially) stable, as shown in Sup-

plementary Note 1.

Supplementary Note 4: Accuracy of signal differentiation and its de-
pendence on model parameters

As previously pointed out, a requirement for reliable signal differentiation is selection of such model

parameters that the nondimensional parameter ε (given by Eq. (S60)) is sufficiently small. Here, we
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are interested in the impact of ε on the accuracy with which BioSD devices are able to differentiate

the input signals applied. In particular, we investigate how the deviation of their behaviour from that

of an ideal differentiator changes in the long term as ε decreases.

The input/output relation of an ideal differentiator is described in the Laplace domain by the transfer

function:

∆ID(s) =
YID(s)
UID(s)

= s (S70)

where YID(s) and UID(s) refer to the Laplace transform of the output and input of the ideal differen-

tiator, respectively. In addition, s = σ + jω is the frequency domain variable with σ , ω ∈ R and j is

the imaginary unit number ( j =
√
−1).

Based on the analysis in Supplementary Note 3, we can derive a transfer function for BioSD differ-

entiators from Eqs. (S57)), (S58)) as:

∆BSD(s) =
Xn(s)
Un(s)

=
s

ε(s2 + s)+1
(S71)

where Xn(s) and Un(s) represent the Laplace transform of the output xn and input un of BioSD net-

works.

Clearly the transfer functions (S70) and (S74) coincide when ε is zero. We now consider a positive

ε in some neighbourhood of zero. Focusing on the frequency response (we set σ = 0 and essentially

use Fourier transform), we have for an arbitrary (finite) frequency ω :

∆ID( jω) = ω 90◦ (S72)

and

∆BSD( jω) = |∆BSD( jω)| φBSD(ω) (S73)

where:

|∆BSD( jω)|= ω

√
ε2 +(1− εω2)2

ε2ω2 +(1− εω2)2 = ω +O(ε)

and

φBSD(ω) = arctan

(
1

εω
−ω

)
= 90◦+O(ε)
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Furthermore, we calculate:

E = |∆ID( jω)−∆BSD( jω)|= εω
2

√
1+ω2(εω2 + ε−1)2

ε2ω2 +(1− εω2)2 = O(ε) (S74)

The above analysis reveals that in the long term, compared to an ideal differentiator, signal differenti-

ation via BioSD modules implies a magnitude and phase shift of only O(ε). In parallel, the absolute

value of the difference between the ideal transfer function and the actual one decreases proportionally

with ε . Thus, as we decrease ε , the output of BioSD networks approaches the ideal derivative of the

input and, by extension, the accuracy of signal differentiation provided increases.

Supplementary Note 5: Changes in the behaviour of Biomolecular Sig-
nal Differentiators based on the frequency content of input signals

As shown in Supplementary Figure 1, there are two large areas of input frequencies, one with “lower

frequencies” and one with “higher frequencies”, over which BioSD networks (ε > 0) can effectively

perform signal differentiation and signal attenuation, respectively. It is evident that, as ε increases,

the latter area expands towards lower frequencies and, thus, the former area shrinks. We can also

detect the existence of a narrow frequency band between the two where BioSD circuits are not able

to differentiate or attenuate input signals with the expected accuracy.

On the other hand, in the ideal case of ε = 0, perfect differentiation of input signals takes place

regardless of their frequency content. Although a behaviour like this may seem desirable, in practice

it can be catastrophic since it leads to substantial amplification of high frequency signal components

(including noise from the cellular environment). As a consequence, the “imperfection” of BioSDs

turns out to be a saving feature of great significance.

We now recall Eqs. (S72), (S73) that describe the frequency response from the input we want to

differentiate to the output we measure regarding an ideal differentiator and a BioSD, respectively. As

already mentioned, it is obvious from these relationships that for input signals which remain constant

over time (ω = 0), the two systems operate in the exact same way. On the contrary, for time-varying

input signals (ω > 0), considerable deviations in their behaviour may appear, as pointed out above.

To get a sense of how close the function of a BioSD device is to the ideal function for an arbitrary
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input frequency, we introduce:

Λ( jω) =
∆BSD( jω)

∆ID( jω)
=

1
ε(( jω)2 + jω)+1

= |Λ( jω)| φΛ(ω) (S75)

where

|Λ( jω)|= |∆BSD( jω)|
|∆ID( jω)|

and

φΛ(ω) = 90◦−φBSD(ω)

When a BioSD network operates exactly as an ideal differentiator, then Λ( jω) = 1 0◦, whereas if

|Λ( jω)|= 0 perfect signal attenuation is achieved. Having these extreme situations in mind and tak-

ing into account the expected performance standards, the circuit designer can use Eq. (S75) as a

metric in order to select a suitable ε and, by extension, an appropriate combination of model parame-

ters. Finally, Supplementary Figure 2 illustrates for different values of ε how the performance metric

in question changes based on the input frequencies.

Supplementary Note 6: An alternative version of Biomolecular Signal
Differentiators

Here we analyze a slightly different version of the previously studied BioSD networks which we call

Biomolecular Signal DifferentiatorsF (BioSDsF ) that include an additional biomolecular species, Z3.

In particular, we describe the following three biomolecular topologies:

• BioSDF -I

We have the CRN:

∅
µ1U

Z3 , Z3
kin Z3 +X , Z3

µ2 ∅ , ∅ b X

X
k2 X +Z , X +Z

k1 Z , X δ ∅ , Z
k3/Z

∅

where µ1, µ2, kin, b, k2, k1, δ , k3 ∈ R+.
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The corresponding ODE model is:

Ż3 = µ1U−µ2Z3

Ẋ = kinZ3 +b− k1XZ−δX

Ż = k2X− k3

• BioSDF -II

We have the CRN:

∅
µ1U

Z3 , Z3
kin Z3 +X , Z3

µ2 ∅

∅ b X , X
k2 X +Z1 , X +Z1

k1 Z1

∅ k3 Z2 , Z1 +Z2
η

∅ , X δ ∅

where µ1, µ2, kin, b, k2, k1, δ , η ∈ R+. We assume that the parameter rate η is sufficiently

large (see Supplementary Note 2).

The corresponding ODE model is:

Ż3 = µ1U−µ2Z3

Ẋ = kinZ3 +b− k1XZ1−δX

Ż1 = k2X−ηZ1Z2

Ż2 = k3−ηZ1Z2

• BioSDF -III

We have the CRN:

∅
µ1U

Z3 , Z3
kin Z3 +X , Z3

µ2 ∅

∅ b X , X
k2 X +Z1 , X +Z1

k1 Z1 , ∅ k3 Z2

X +Z2
k1 X +X +Z2 , Z1 +Z2

η
∅ , X δ ∅

where µ1, µ2, kin, b, k2, k1, δ , η ∈ R+.
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The corresponding ODE model is:

Ż3 = µ1U−µ2Z3

Ẋ = kinZ3 +b− k1XZ1 + k1XZ2−δX

Ż1 = k2X−ηZ1Z2

Ż2 = k3−ηZ1Z2

It is evident that each of the above circuits can be seen as the interconnection of two subsystems.

More specifically, we have the linear subsystem (the first equation in each of above ODE models):

Ż3 = µ1U−µ2Z3 (S76)

which receives the signal U we want to differentiate as input and produces an output Z3. This is, in

turn, applied as input to a second subsystem whose output is X . While the first subsystem is the same

in all BioSDF topologies, the second one differs. In fact, the latter is identical to BioSD-I, BioSD-II,

BioSD-III (see previous sections) for BioSDF -I, BioSDF -II, BioSDF -III, respectively, with the only

difference lying in the input, which is now Z3 (instead of U as before).

For a constant input U∗ the first subsystem (S76) has a unique positive steady state (assuming it

exists and is finite):

Z3 =
µ1U∗

µ2
(S77)

Since Eq. (S76) is linear and (µ2) is always positive then Eq. (S77) constitutes a globally exponen-

tially stable equilibrium point. This also guarantees global input-to-state stability.

We now concentrate on the local behaviour of BioSDF modules and, consequently, we consider

the coordinate transformations: u =U−U∗, x = X−X∗, z = Z−Z∗, z1 = Z1−Z∗1 , z2 = Z2−Z∗2 ,

z3 = Z3−Z∗3 denoting small perturbations around the corresponding equilibria of BioSDF networks -

(U∗, X∗, Z∗, Z∗3 ) for BioSDF -I and (U∗, X∗, Z∗1 , Z∗2 , Z∗3 ) for BioSDF -II, BioSDF -III (the steady state

of the last two networks do not necessarily coincide).

First, we study Eq. (S76) separately. In the Laplace domain, we have:

∆LPF(s) =
Z3(s)
U(s)

=
µ1

s+µ2
(S78)
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where Z3(s), U(s) are the Laplace transform of z3, u, respectively. Focusing on the frequency re-

sponse, we get:

∆LPF( jω) =
µ1

µ2

1

j
ω

µ2
+1

(S79)

This is a transfer function of a first-order low-pass filter which is capable of preserving low-frequency

signals and rejecting high-frequency signals. Indeed, the magnitude and the phase of the system in

question are given by:

|∆LPF( jω)|= µ1

µ2

1√√√√1+

(
ω

µ2

)2

and

φLPF(ω) =−arctan
ω

µ2
,

respectively.

We can easily see that in practice, when ω � µ2, there is a constant input/output gain

(
µ1

µ2

)
and no

phase lag. On the other hand, for ω2� µ2
2 strong attenuation takes place. The general behaviour of

the filter can be easily understood through the Bode diagram in Supplementary Figure 3.

We now consider a BioSDF design which can be described by the transfer function of the series

connection of the previously studied filter and a BioSD design (as already outlined in Supplementary

Note 4, all three BioSD circuits are described by the same transfer function), i.e.:

∆BSDF (s) =
Xn(s)
Un(s)

= ∆LPF(s)∆BSD(s)

or

∆BSDF (s) =
µ1

s+µ2
· s

ε(s2 + s)+1
(S80)

where ∆LPF(s) =
Z3n(s)
Un(s)

, ∆BSDF (s) =
Xn(s)
Z3n(s)

with Z3n(s) = pZ3(s) and p =
un

u
(Supplementary Note

3).

For
ω

µ2
,ε → 0 Eq. (S80) becomes:

∆BSDF (s) =
µ1

µ2
s (S81)
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which implies in the time domain (recall Supplementary Note 3):

X =
µ1kin

µ2k1k3
U̇ +

k3

k2
(S82)

Hence, in this case, BioSDF networks work in a similar manner as BioSDs (Eq. (S64)) with respect

to signal differentiation. The only difference appears in the output gain by which the derivative of the

input is multiplied. Besides kin,k1,k3, this gain is now determined by µ1,µ2 as well, thus providing

increased tunability.

Next, we shift our focus to the more general scenario where we allow ε to move in some neigh-

bourhood of zero and
ω

µ2
to vary from zero to infinity. We can easily evaluate the performance of a

BioSDF differentiator by taking advantage of our initial decomposition. In particular, we can predict

the behaviour of the differentiator from the behaviour of its individual components, namely a low-pass

filter (analyzed earlier in this section) and a BioSD device (see the preceding sections and especially

Supplementary Note 4 and 5). Indeed, exploiting frequency response analysis for performance as-

sessment in the long term, we have for an arbitrary input frequency ω:

∆BSDF ( jω) = ∆LPF( jω)∆BSD( jω) = |∆BSDF ( jω)| φBSDF (ω) (S83)

where

|∆BSDF ( jω)|= |∆LPF( jω)||∆BSD( jω)|

and

φBSDF (ω) = φLPF(ω)+φBSD(ω)

In addition, following the notion of Supplementary Note 5, we can introduce the (normalized) perfor-

mance metric :

ΛF( jω) =
µ2

µ1

∆BSDF ( jω)

∆ID( jω)
(S84)

where

|ΛF( jω)|= µ2

µ1

|∆BSD( jω)|
|∆ID( jω)|

and

φΛF (ω) = 90◦−φBSDF (ω)
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Perfect signal differentiation and attenuation happen when ΛF( jω) = 1 0◦ and |ΛF( jω)|= 0, respec-

tively.

Consequently, for a given ε , BioSDF circuits are characterized by an enhanced capability of high-

frequency signal attenuation compared to BioSD ones. In fact, as demonstrated in Supplementary

Figure 4, we can extend the frequency band where strong signal attenuation is carried out by appro-

priately tuning the filter module. In other words, we can adjust the bandwidth of the filter as desired

through the parameter rate µ2. The price we pay for this significant improvement is the increase in

structural complexity due to the addition of the species Z3 via which the additional filtering is ac-

complished. Finally, note that accompanying a differentiator with a low-pass filter is a widely used

strategy in traditional engineering in order to deal with high-frequency measurement noise.

Supplementary Note 7: Numerical simulations

In this section we present additional simulations for further computational validation of our theoret-

ical results in section Sensing the response speed of biomolecular networks in the main text. In

particular, we numerically investigate the response of BioSD-II and BioSD-III to the inputs shown in

Fig. 2c and Fig. 3c. As can be seen from Supplementary Figure 5 and Supplementary Figure 6, the

behaviour of both BioSD-II and BioSD-III is identical to that of BioSD-I depicted in the main text.

As a result, the conclusions drawn with respect to the latter circuit are valid for the other designs as

well.

Supplementary Note 8: Guidelines for experimental implementation of
Biomolecular Signal Differentiators

In the main text we have focused on naturally occurring examples of the BioSD-II topology. Here,

we discuss how synthetic BioSD circuits can be designed and implemented inside a living cell. In

particular, we propose experimental implementations of the described topologies in Escherichia coli

(Supplementary Figure 7).

Inducible expression of species X can be achieved from any well-characterized promoter, such as

the IPTG-inducible Plac. Leakiness of the lac promoter will ensure nonzero expression levels (b) even

in the absence of inducer. Alternatively, if higher baseline expression levels are required, X could

additionally be expressed from a weak constitutive promoter.
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To minimize undesirable interference with other cellular processes, X should be an orthogonal

sigma factor, such as σF from Bacillus subtilis [1]. A translational fusion of X to GFP will allow for

easy tracking of the system output. σF will then induce expression of a Lon protease (Z in BioSD-I,

Z1 in BioSD-II and III) from its cognate promoter PF1. In this case, a Lon− strain of E. coli would be

used to avoid interference of naturally present Lon protease. Addition of a degradation tag to σF will

target it for degradation by the Lon protease. To approximate zeroth-order degradation, an ssrA tag

will be fused to the Lon protease as previously described in [2, 3].

For BioSD-II, we additionally introduce constitutive expression of the protease inhibitor PinA from

phage T4 (Z2), which has been shown to specifically inhibit the Lon protease in E. coli with high

affinity [4]. A synthetic promoter from the BioBrick collection [5] may be used to achieve the desired

expression level of Z2. Ideally, an orthogonal Lon protease should be used (e.g. Lon protease from

Mesoplasma florum [6]) to prevent cross-talk with other cellular proteins. However, since the inter-

action of PinA with proteases has been characterized only in E. coli so far, we have suggested use of

the E. coli Lon protease.

Due to the number of required interactions in BioSD-III, it will likely be necessary to introduce

auxiliary species for X , Z1 and Z2, which we refer to as Xaux, Z1,aux and Z2,aux, respectively. These

auxiliary species would ideally have identical behaviour to the main species X , Z1 and Z2, even though

simulations indicate that completely identical behaviour is not required (see Supplementary Note 9).

One option is to augment the design for BioSD-II with the Hrp system from Pseudomonas syringae,

which has previously been implemented in synthetic biology studies [7]. HrpR (Xaux) fused to a

fluorescent tag (mCherry) is expressed from Plac together with σF , and HrpS (Z2,aux) is expressed in

an operon with PinA. HrpR and HrpS are both required to induce additional production of σF and

HrpR from PhrpL. At the same time, HrpV (Z1,aux) binds HrpS, rendering it inactive.

Finally, the structural addition required for BioSDF can be implemented by, for example, express-

ing X from a T7 promoter and expressing T7 RNA polymerase (Z3) from a separate inducible pro-

moter.
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Supplementary Note 9: Analysis of the experimental topology of Biomolec-
ular Signal Differentiator-III

Here we further analyze the proposed synthetic design of BioSD-III, the behaviour of which may be

more complicated due to the use of three auxiliary species (see Supplementary Note 8).

The biomolecular topology shown in Supplementary Figure 7c can be described by the following

set of ODEs:

Ẋ = kinU +b− k1XZ1 + k1aXauxZ2,aux−δX (S85)

Ẋaux = kinU +b− k1bXauxZ1 + k1aXauxZ2,aux−δaXaux (S86)

Ż1 = k2X−ηZ1Z2 (S87)

Ż1,aux = k2X−ηaZ1,auxZ2,aux (S88)

Ż2 = k3−ηZ1Z2 (S89)

Ż2,aux = k3−ηaZ1,auxZ2,aux (S90)

where kin, b, k2, k1, k1a, k1b, δ , δa, η , ηa ∈ R+.

In order for the behaviour of X (measured output species) in the system (S85)-(S90) to perfectly

match the one of X in the model (S23)-(S25), we need: k1 = k1a = k1b, δ = δa and η = ηa. Nev-

ertheless, non-satisfaction of the aforementioned conditions does not necessarily entail considerable

loss of accuracy regarding signal differentiation (Supplementary Figure 8).
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Supplementary Figure 1: Frequency response analysis of Biomolecular Signal Differentiators.
Bode plot of a BioSD differentiator (Eq. (S73)). The magnitude and the phase of its transfer function are depicted for
different values of ε via distinct colours. The case of ε = 0 represents the behaviour of an ideal differentiator.

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441952


-150

-100

-50

0

50

M
a
g
n
it
u
d
e
 (

d
B

)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

-4

-3

-2

-1

Bode Diagram

Frequency  (rad/s)

Supplementary Figure 2: A performance metric in the frequency domain.
Bode plot of the metric (S75) through which the accuracy of signal differentiation and signal attenuation regarding a
BioSD can be easily assessed. Different colours represent the magnitude and the phase of the corresponding transfer
function for different values of ε . The case of ε = 0 refers to an ideal differentiator.
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Supplementary Figure 3: Frequency response analysis of the subsystem that receives the input signal U .
Bode diagram of the filter module described by Eq. (S79). The magnitude and and the phase lag of its frequency response
for different values of µ are shown in different colours where µ = µ1 = µ2.
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Supplementary Figure 4: Frequency response analysis of Biomolecular Signal DifferentiatorsF .
Bode diagram depicting the magnitude and phase shift regarding the frequency response of a BioSDF differentiator (Eq.
(S83)) with ε = 10−4. We consider different values of µ , where µ = µ1 = µ2, that correspond to different colours. For
comparison purposes, we also depict the bode plot (magnitude and phase) of the transfer function of an ideal differentiator
(Eq. (S72)) and a BioSD differentiator (Eq. (S73)) with ε = 10−4 which are represented by black and blue dashed lines,
respectively.
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Supplementary Figure 5: Sensing the rate-of-change of a synthetic regulatory biomolecular network through a
Biomolecular Signal Differentiator.
a Simulation of the BioSD-II (Eqs. (S11)-(S13)) response to the input presented in Fig. 2c with η = 3000, b = 150 and
the remaining parameter values equal to those used in Fig. 2d. η can be characterized as sufficiently large since condition
(S43) is satisfied. b Simulation of the BioSD-III (Eqs. (S23)-(S25)) response to the input presented in Fig. 2c with η = 30
and the remaining parameter values equal to those used in Fig. 2d. c The simulation in a is repeated with the values of kin,
k3, b set to 10, 10 and 100, respectively (condition (S43) is satisfied). d The simulation in b is repeated with the values of
both kin and k3 set to 10. In a, b condition (S60) is satisfied, i.e. ε � 1. In contrast, ε � 1 in c, d.
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Supplementary Figure 6: Sensing the rate-of-change of a birth-death biomolecular process through a Biomolecu-
lar Signal Differentiator.
a Simulation of the BioSD-II (Eqs. (S11)-(S13)) response to the input presented in Fig. 3c with η = 3000 and the re-
maining parameter values equal to those used in Fig. 3d. η can be described as sufficiently large since condition (S43)
is satisfied. b Simulation of the BioSD-III (Eqs. (S23)-(S25)) response to the input presented in Fig. 3c with η = 30 and
the remaining parameter values equal to those used in Fig. 3d. In both a and b, condition (S60) is violated (ε � 1.)
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Supplementary Figure 7: Possible experimental implementations of Biomolecular Signal Differentiators.
Schematic representation of synthetic designs for a BioSD-I, b BioSD-II and c BioSD-III.
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Supplementary Figure 8: Sensing the rate-of-change of a synthetic regulatory biomolecular network through the
proposed (experimental) circuit of Biomolecular Signal Differentiator-III.
a Simulation of the circuit given by Eqs. (S85)-(S90) using the input presented in Fig. 3c and the following parameter
values: kin = k3 = b = 100, k1 = k1a = k1b = k2 = 1, η = ηa = 30, δ = δa = 0.5 (this scenario corresponds to the simu-
lation depicted in Supplementary Figure 5b). b We repeat the simulation in a with the values of k1a, k1b, ηa, δa set to 1.5
(increase by 50%), 1.25 (increase by 25%), 45 (increase by 50%), 0.75 (increase by 50%), respectively.
It is evident that in both a (ideal case) and b the output, X , of the differentiator is an accurate replica of the derivative of
input U - the loss of accuracy in b is negligible.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441952


References

[1] Indra Bervoets et al. “A sigma factor toolbox for orthogonal gene expression in Escherichia

coli”. In: Nucleic Acids Research 46.4 (2018), pp. 2133–2144.

[2] Wilson W Wong, Tony Y Tsai, and James C Liao. “Single-cell zeroth-order protein degradation

enhances the robustness of synthetic oscillator”. In: Molecular Systems Biology 3.130 (2007),

pp. 1–8.

[3] Jordan Ang et al. “Considerations for using integral feedback control to construct a perfectly

adapting synthetic gene network”. In: Journal of Theoretical Biology 266.4 (2010), pp. 723–

738.

[4] James J Hilliard, Michael R Maurizi, and Lee D Simon. “Isolation and characterization of the

phage T4 PinA protein, an inhibitor of the ATP-dependent Lon protease of Escherichia coli”.

In: Journal of Biological Chemistry 273.1 (1998), pp. 518–523.

[5] Jason R Kelly et al. “Measuring the activity of BioBrick promoters using an in vivo reference

standard”. In: Journal of Biological Engineering 3.4 (2009), pp. 1754–1611.

[6] Stephanie K Aoki et al. “A universal biomolecular integral feedback controller for robust perfect

adaptation”. In: Nature 570.7762 (2019), pp. 533–537.

[7] Baojun Wang, Mauricio Barahona, and Martin Buck. “Engineering modular and tunable ge-

netic amplifiers for scaling transcriptional signals in cascaded gene networks.” In: Nucleic Acids

Research 42.14 (2014), pp. 9484–9492.

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441952

	LBSD__Main_Paper-5.pdf
	References

	LBSD___Supplementary_Info-3.pdf
	References


